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CARMICHAEL'S CONJECTURE ON THE EULER FUNCTION 
IS VALID BELOW 1010,000,000 

AARON SCHLAFLY AND STAN WAGON 

ABSTRACT. Carmichael's conjecture states that if 0(x) = n , then +(y) = n for 
some y :& x (q is Euler's totient function). We show that the conjecture is 
valid for all x under 1010,900,000 . The main new idea is the application of a 
prime-certification technique that allows us to very quickly certify the primality 
of the thousands of large numbers that must divide a counterexample. 

Let the multiplicity of an integer be the number of times it occurs as a value 
of 0q(x), where q is the Euler function. Table 1 shows the multiplicities of the 
first 50 integers (odd numbers greater than 1 have multiplicity 0, since q(x) is 
even if x > 1). For example, the multiplicity of 4 is 4 because the numbers 5, 
8, 10, and 12 (and only these) have 0-value 4. 

TABLE 1. These multiplicities show that the number of times a 
q-value can occur might be 0 (as is the case for all odd numbers 
greater than 1 and some evens, such as 14) or 2, 3, 4, 5, 6, 7, 8, 
9, 10, or 11 

0-value: 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
Multiplicity: 2 3 4 4 5 2 6 0 6 4 5 2 10 0 2 2 7 0 8 0 9 4 3 2 1 1 0 

In 1907 R. D. Carmichael [1] claimed that 1 is not a multiplicity; equiva- 
lently: q takes on no value precisely once. The result appears as an exercise 
in his 1914 book [2], but in 1922 his proof was found to be erroneous [3] and 
the assertion is now known as Carmichael's conjecture. An algebraic formula- 
tion of the conjecture is: No finite cyclic group is characterized by the number 
of its generators. Carmichael himself proved [3] that any counterexample x 
must be greater than 1037. This was improved by V. Klee [5] to 10400, and 
by Masai and Vallette [6] to 1010,000. In this note we describe a computation 
using Mathematica on a Macintosh that pushes the lower bound on x to be- 
yond 1010,900,000. Throughout this note, x represents a counterexample to the 
conjecture. Because 0(n) > nlog2/log(2n) [9, p. 172], a lower bound on n is 
essentially the same as one on x . We do not know of another unsolved problem 
in mathematics for which a lower bound on a counterexample is so high. 

It is natural to wonder about other patterns in the multiplicities. Erdos [4] has 
shown that if a multiplicity occurs once it occurs infinitely often, and Sierpinski 
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TABLE 2. The first occurrences of each +-multiplicity up to 
100. For example, there are precisely 90 values of m for 
which q(m) = 18,000, and 18,000 is minimal with this prop- 
erty. Carmichael conjectured that 1 is never a multiplicity 

First +-value First +-value First +-value First +-value 
with this with this with this with this 

Multiplicity multiplicity Multiplicity multiplicity Multiplicity multiplicity Multiplicity multiplicity 
0 3 26 2560 51 4992 76 21840 
2 1 27 384 52 17640 77 9072 
3 2 28 288 53 2016 78 38640 
4 4 29 1320 54 1152 79 9360 
5 8 30 3696 55 6000 80 81216 
6 12 31 240 56 12288 81 4032 
7 32 32 768 57 4752 82 5280 
8 36 33 9000 58 2688 83 4800 
9 40 34 432 59 3024 84 4608 

10 24 35 7128 60 13680 85 16896 
11 48 36 4200 61 9984 86 3456 
12 160 37 480 62 1728 87 3840 
13 396 38 576 63 1920 88 10800 
14 2268 39 1296 64 2400 89 9504 
15 704 40 1200 65 7560 90 18000 
16 312 41 15936 66 2304 91 23520 
17 72 42 3312 67 22848 92 39936 
18 336 43 3072 68 8400 93 5040 
19 216 44 3240 69 29160 94 26208 
20 936 45 864 70 5376 95 27360 
21 144 46 3120 71 3360 96 6480 
22 624 47 7344 72 1440 97 9216 
23 1056 48 3888 73 13248 98 2880 
24 1760 49 720 74 11040 99 26496 
25 360 50 1680 75 27720 100 34272 

had earlier conjectured that each integer greater than 1 occurs as a multiplicity. 
Computations along the lines of those that produced Table 1 show that each 
integer between 2 and 100 does occur; see Table 2. 

The idea for generating large lower bounds on x goes back to a theorem of 
Carmichael [3], later refined by Klee [5, 10]. The result leads to a straightfor- 
ward algorithm for obtaining prime numbers whose squares divide x. 

Theorem (Carmichael and Klee). Suppose x factors into dle, where d1 = flpai 
and e= qjJ and {qj}, {p1} are disjoint, possibly empty, sets of primes. Let 

d2 = rj q]', where 0 < cj < bj for each j, and let P = 1 + d2q4(d1). If P is 
prime, then p21X. 

We start by applying the theorem with d1 = d2 = 1; this tells us that 22 x. 
Then using d1 = 1 and d2 = 2 yields that 32Ix. And letting d1 = 1 and 
d2 = 2 * 3 gives 721x, and d1 = 1 and d2 = 2 * 3 * 7 gives 432Ix. At this 
point, following Carmichael [3], we break the proof into two cases according as 
33 divides x or not. Klee and Masai and Vallette used three and four cases, 
respectively, but an improvement in the prime-certification method (described 
later) allows us to return to the original two-case scenario. 

In the first case (33 does not divide x), we let L = {7, 13, 43} and consider 
all products k of elements in L. For each such k, the theorem says that if 
either of 6k + 1 or 12k + 1 is prime, then its square divides x; the 6k comes 
from d1 = 1 and d2 = 2 * 3 * k, and the 12k from d1 = 32 and d2 = 2k . For 
the primes P that arise in this way we add 2 log10 P to a counter that keeps 
track of the lower bound. After checking all products from L we append one 
of the new primes to L and then repeat, considering all products from L that 
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use the new prime. We continue until we are satisfied with the bound. The 
number of products increases exponentially, so it takes only a few iterations to 
reach a very large bound. The second case is similar, with the forms 6k + 1 
and 18k+ 1. 

The main bottleneck is determining (with certainty) the primality of the over 
eight million large integers (up to 91 digits) that occur as 6k + 1, 12k + 1, or 
18k + 1 . Masai and Vallette considered only possible primes less than 25 109, 
and so could use, with confidence, an algorithm based on a strong-pseudoprime 
test with bases 2, 3, 5, and 7, as described in [8]. That algorithm, with small 
modifications, is now known to be useful up to 1013 [9], but this range is too 
small for our multimillion-digit goal. An elliptic curve certification method will 
work in principle, but it is too slow for the large number of primes, more than 
270,000, that must be certified. In the context of this problem, however, we 
have the agreeable situation that all the potential primes p that show up are 
accompanied by the factorization of p - 1 . Since p - 1 is a product of primes 
in L, its factorization can be stored alongside p. We may therefore appeal to 
the following prime certification process (see [9, p. 36]), which is closely related 
to Pratt's recursive proof that the primes lie in the complexity class NP (see [11, 
Chapter 8]). 

Theorem (Lucas, Lehmer, Brillhart, and Selfridge). Suppose n is a positive in- 
teger, Q is the set of prime factors of n - 1, and for each q E Q there is an 
integer aq such that an-1 = 1 and aq l)/q 1 (mod n). Then n is prime. 
Conversely, if n is prime, it has a primitive root, which serves as aq for each q. 

Of course, in practice we first used a pseudoprime test to see if a candi- 
date was a probable prime. If so, we applied the certification procedure with 
a = 2,3,5,7, 11, 17, 19,23,29,31,37,41 which was always sufficient to 
prove primality. Another technical detail: we made some preliminary runs in 
each case to determine a set of 30 small primes whose squares divide x; we 
then used this set to augment L after each iteration. By keeping the primes 
in L as small as possible, the total amount of computation is minimized since 
the size of the candidates is kept small. Tables 3 and 4 (next page) summarize 
the computations in the first case (33 does not divide x) and second case (27 
divides x), respectively. Note that each iteration has twice as many candidates 
for primes and yields very closely twice as many digits. This is because the den- 
sity of the primes decreases logarithmically but the number of digits increases 
logarithmically-the two effects exactly balance. 

There can be little doubt that Carmichael's conjecture is true. At each it- 
eration we need but a single new prime to keep going: add it to L and then 
generate a profusion of new possibilities for primes. But instead of one new 
prime at each iteration we get hundreds and thousands. Even if by some quirk 
an iteration yielded no new primes, we would have all the leftover primes from 
previous iterations with which to augment L and try again. 

The entire computation required a few hundred hours of Macintosh com- 
puting time. One could surely push the bound farther, using faster software 
and hardware. But what is badly needed is an idea that would allow one to say 
with certainty that at least one prime shows up at each iteration, for that would 
prove the conjecture. 
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TABLE 3. This table shows how the primes arise at each itera- 
tion, along with the consequent increase in the lower bound on 
x, in the case that 33 does not divide x 

Number of candidates lower bound 
for primality at Number of primes on number of 

The set L each iteration at each iteration Percentage digits in x 
{7, 13, 43, 79, 157, 547} 128 31 24.2% 315 
{7, 13, 43, 79, 157, 547, 1093} 128 18 20% 596 
{7, 13, . 1093, 3319} 256 22 8.5% 1280 
{7, 13, . 3319, 3613} 512 51 10% 2582 
{7, 13, . 3613, 6163} 1024 83 8.1% 5012 
{7, 13, . 6163, 6637} 2048 173 8.4% 10627 
{7, 13, . 6637, 6709} 4096 306 7.5% 21363 
{7, 13, . 6709, 40507} 8192 504 6.2% 41642 
{7, 13, . 40507, 42667} 16384 974 5.9% 86078 
15 primes: {7, 13, . 42667, 45949} 32768 1706 5.2% 170712 
16 primes: {7, 13, . 45949, 46957} 65536 3204 4.9% 343620 
17 primes: {7, 13, . 46957, 74419} 131072 5900 4.5% 690567 
18primes: {7, 13, . 74419, 81013} 262144 11277 4.3% 1,409,601 
19 primes: {7, 13, . 81013, 85333} 524288 20543 3.9% 2,820,321 
20 primes: {7, 13, . 85333, 86269} 1,048,576 41477 4.0% 5,648,822 
21 primes: {7, 13, . 86269, 91813} 2,097,152 69523 3.3% 11,329,959 
Totals 4,194,304 155,792 3.71% 11,329,959 

TABLE 4. This table shows how the primes arise at each itera- 
tion, along with the consequent increase in the lower bound on 
x, in the case that 33 does divide x. The prime 617, 767 was 
discovered late, and so was not added to L until the 19-prime 
case 

Number of candidates lower bound 
for primality at Number of primes on number of 

The set L each iteration at each iteration Percentage digits in x 
{7, 19, 43, 127, 2287, 4903} 128 23 18% 279 
{7, 19, . 4903, 5419} 128 16 12.5% 623 
{7, 19, . 5419, 13723} 256 27 10.6% 1283 
{7, 19, . 13723, 14479} 512 54 10.5% 2774 
{7, 19, . 14479, 98299} 1024 58 5.7% 4855 
{7, 19, . 98299, 101347} 2048 140 6.8% 10571 
{7, 19, . 101347, 304039} 4096 239 5.8% 21425 
{7, 19, . 304039, 688087} 8192 391 4.8% 41111 
{7, 19, . 688087, 1676827} 16384 696 4.2% 81214 
15 primes: {7, 19, . 1676827, 3735583} 32768 1347 4.1% 167731 
16 primes: {7, 19, . 3735583, 3736087} 65536 2498 3.8% 343919 
17 primes: {7, 19, . 3736087, 4130323} 131072 4400 3.4% 683457 
18 primes: {7, 19 ..4130323, 4324363} 262144 8134 3.1% 1,364,713 
19 primes: {7, 19, . 617767, ... , 4324363} 524288 15138 2.9% 2,464,529 
20 primes: {7, 19 ..4324363, 4693267} 1,048,576 29124 2.8% 5,248,342 
21 primes: {7, 19 ..4693267, 4951819} 2,097,152 55536 2.7% 10,920,865 
Totals 4,194,304 117,821 2.81% 10,920, 865 

Notes. Much of this work appeared in the first author's senior honors thesis at 
Macalester College, 1993. We are grateful to Dan Hornbach who supervised 
several runs on a Macintosh Quadra. 
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